
CHAPTER 1 

THEORETICAL REVIEW 

1.  

Tunneling of a particle through a barrier is one of the most studied phenomena in quantum 

mechanics. It plays an important role in many semiconductor devices. In particular, the tunnel 

diode or Esaki diode (Esaki 1958) involves tunneling through a forward-biased heavily doped 

(degenerate) junction in germanium. One important characteristics of the Esaki diode is that it 

exhibits negative differential resistance (NDR), making possible its application as a high 

frequency (microwave) oscillator. The properties of the original Esaki diode were determined 

(and hence also limited) mainly by the band structure of the bulk semiconductor. In 1973 Tsu 

and Esaki (Tsu and Esaki 1973) suggested that NDR can also be achieved in a superlattice. 

However, it took more than ten years before high quality quantum well (QW) samples exhibiting 

NDR could be fabricated (Sollner, Goodhue et al. 1983). Even in that case the sample involved a 

QW rather than a superlattice. NDR in GaAs/AlAs superlattice was reported several years 

later(Sibille, Palmier et al. 1990). Since this pioneering work NDR has been observed in many 

structures involving QWs and superlattices. 

1.1. Peak – to – Valley Current Ratio (PVR) 

PVR defined as the ratio of the current at the resonant tunneling peak energy to that at the 

minimum (or valley) before the current starts to increase again with voltage. The magnitude of 

this ratio is determined by scattering of the tunneling electrons within the well by phonons, 

interface roughness and other defects. 



While the absolute peak-current densities resulting from simulations are in good agreement with 

experimental data, the calculated valley current densities are in one of more orders of magnitude 

lower than the experimental ones (Mizuta and Tanoue 1995). For AlAs/GaAs or AlAs/InGaAs 

diode structures on GaAs the experimental PVRs at room temperature are in the order of 6 

(Waser 2005). The predicted PVR from simulations are more than one order of magnitude higher 

(Förster 2000). The reason for this discrepancy is the neglect of scattering effects in the 

calculation. Scattering effects broaden the resonance in the transmission probability while 

simultaneously damping it. The peak current density is nearly not sensitive to scattering effects 

but the valley current and the PVR are very strong influenced. 

An appropriate scattering model is based on the Breit-Wigner generalization of the Lorentzian 

form of the resonant transmission probability. Within this formalism resonant tunneling in one 

dimension is studied by Stone et al.(Stone and Lee 1985) who derived the total transmission 

probability in the presence of inelastic scattering for a symmetric structure as:  
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Where    is the half width of the resonance in the coherent transmission probability and 

0 i     is the total resonant half width,    representing the contribution to the broadening 

due to the inelastic scattering. Büttiker (Buttiker 1988) has interpreted this total transmission 

probability as a sum of a coherent and sequential (incoherent) transmission probabilities 
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In this picture of scattering the fraction of carriers penetrating the structure coherently is 

             and the fraction of carriers traversing the structure sequentially is 
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            . From these results one can infer that the smaller the elastic width   , the smaller 

is the amount of scattering needed to make the sequential tunneling current dominant. This 

means that in tunneling diode with thick barrier (sharp resonances) in spite of small scattering 

probability, considerable sequential tunneling contributions will be observed. Furthermore, 

Eq.(0.1) can be interpreted as a folding of the coherent transmission probability (Eq.(0.1) with 

    ) with a normalized Lorentzian of half width   . In current density calculations this 

mechanism conserves the peak current density but affects the valley current very strongly 

resulting in lower PVR values. In this kind of treatment of I-V curves the effect of scattering is 

used as a fitting parameter to determine the resonance broadening at room temperature. For a 

typical RTD with 6 ML AlAs barriers and a 5 nm GaAs quantum well a resonance half width of 

about 8 meV at room temperature was found(Waser 2005). 

From the theoretical point of view this treatment of scattering is not satisfactory. Therefore a 

more complex approach is needed. In an enhanced calculation non-equilibrium Green-function 

theory is the base of the calculations in which self-consistent charging, incoherent and inelastic 

scattering, and the band structure is considered. Lake et al.(Foster 1994) have developed a 

complex simulation package in which most of the relevant effects are taken into account. A real-

space tight binding formulation provides an accurate synthesis of heterostructures on an atomic 

scale. It implies the consideration of inter-valley and inter-band transitions and gives a 

sophisticated description of electrons in the gap-region ("band-warping").  

The calculations of Peak to Valley Ratio (PVR) showed a good agreement with the experimental 

results at the peak (Tsuchiya and Sakaki 1986). In the contrary, the calculated valley current 

density is far smaller than that is observed in the experiment, and thus the resulting P/V current is 

more than one order of magnitude larger than the experimental data. The excess current observed 



in the valley regime has been ascribed to phase-coherence breaking scattering, which is 

neglected in the global coherent tunneling model. 

A sequential tunneling model was proposed by Luryi (Luryi 1985; Luryi 1989), based on the 

idea that the mean free time of electrons in a bulk GaAs material is of the order of 

subpicoseconds at room temperature, which can be much shorter than the dwell time of relatively 

thick double-barrier structure. For instance, the momentum relaxation time of electrons in a low-

doped n-type GaAs bulk material                is of the order of 0.1 ps for a wide range of 

energy (Mizuta and Tanoue 1995). So it is likely that the electrons in quantum well experience 

some degree of scattering during tunneling process and lose their phase-coherence. This 

alternative explanation of the RTD phenomenon came out about ten years after the global 

coherent resonant tunneling reported by Tsu and Esaki.  

1.2. T0 Effect and Inhomogeneous Barrier Height 

The current diffusion ideality can be studied by the ideality factor  . The closer the ideality 

factor to unity the more ideal the diffusion is. Ideality factor can be found by plotting     against 

V and taking the slope of the plot as;  
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Where   is the current density,   is the charge unit,   is Boltzmann constant in     , and   is 

temperature in kelvin. Often it has been found that the ideality factor increases with decreasing 

temperature. 



   effect is a way to study the dependency of the ideality factor on the temperature. Such a 

dependence could be attributed to the inhomogenities in the barrier height(Pipinis, Rimeika et al. 

1998).  And the existence of the thermionic field emission current. 

Apparent barrier height or zero bias barrier height can be found from equation (1.8) which 

depends on the saturation current. 

According to Tung's theory, there is a linear correlation between the experimental zero bias 

barrier heights     and ideality factor  . 

Altuntas et al. (Altuntas, AltIndal et al. 2009) experimental results show that there are two linear 

regions between     and   which they explained as a literal inhomogeneities of the barrier 

height. 

On the other hand, Rodrigues(Rodrigues 2007) has a linear relation but the ideality factor was 

larger than 4. This problem has been explained as surface states in the Chemical vapor deposition 

(CVD) contacts which tend to be inhomogeneous.  

The barrier height obtained under flat-band condition is called the flat-band barrier height and is 

considered as the real essential quantity. The flat band barrier height     can be calculated from 

the experimental ideality factor and zero-bias barrier height     according to(Werner and Guttler 

1993) 
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Where    is the density of states in the conduction band and    is the doping concentration in 

the semiconductor. 



Usually, the barrier height obtained under the flat band condition is considered to be a real 

quantity which assumes that the electrical field is zero. This eliminates the effect of image force 

lowering that would affect the I-V characteristics and removes the influence of lateral in 

homogeneity(Dökme, Altindal et al. 2006). To address the observed abnormal deviation from 

classical thermionic emission theory, some researchers (Schmitsdorf, Kampen et al. 1995; 

AltIndal, Karadeniz et al. 2003) considered a system of discrete regions of low barrier imbedded 

in a higher background uniform barrier. 

Barrier In homogeneities are described mainly by Gaussian distribution function (Karatas and 

AltIndal 2005) 
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Where    is the standard deviation,    is the barrier height and     is the mean barrier height. 

The total current across the Schottky diode containing barrier inhomogeneities can be expressed 

as (Karatas and AltIndal 2005) 
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Where         is the current at voltage bias   for a barrier of height    and       is the 

normalized distribution function giving the probability of occurrence for barrier height   . 

Using Eq. (0.6), the total current in a given forward bias   is then given by (Karatas and AltIndal 

2005) 
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Where     and     are the apparent ideality factor and apparent barrier height, respectively, and 

are given by 
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We need to assume the mean Schottky barrier     and    are linearly bias-dependent on Gaussian 

parameters, such that               and standard deviation            , where      is 

the barrier height at temperature      ,    and    are voltage coefficients which may depend 

on temperature, quantifying the voltage deformation of the barrier height distribution (Zhu, 

Detavernier et al. 2000; Gumus, Turut et al. 2002). The temperature dependence of    is small 

and therefore can be neglected (Hudait, Venkateswarlu et al. 2001). The decrease of zero-bias 

barrier height is caused by the existence of the Gaussian distribution and the extent of influence 

is determined by the standard deviation itself. The existence of the barrier inhomogeneities 

affects the current transport of electrons across the Schottky barrier. Since at low temperatures, 

charge carriers have very low energies to surpass the energy barrier, tunneling of electrons is the 

dominant process(Mtangi, Auret et al. 2009). 

As a result of the Gaussian distribution of the barrier, Richardson plot can now be modified by 

combining Eqs. (0.8) and (0.9) such that, 
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And  

 

 
2 2

0

2 2 2
ln ln **

2

apso
qI q

A A
T k T kT

  
    

     

(0.12)

 

Where     is the modified Richardson constant. A plot of the modified        
   

      
         versus        yields a straight line with the slope giving the mean barrier 

height and the intercept giving the modified Richardson constant. 


