Web of Science InCites Journal Citation Reports

Essential Science Indicators

EndNote

Dudalan

Sign In 🔻

Help

English 🔻

Web of Science

54 of 752

UV excitations of halons

By: Stojanovic, L (Stojanovic, Ljiljana)^[1]; Alyoubi, AO (Alyoubi, Abdulrahman O.)^[2]; Aziz, SG (Aziz, Saadullah G.)^[2]; Hilal, RH (Hilal, Rifaat H.)^[2,3]; Barbatti, M (Barbatti, Mario)^[1]
View ResearcherID and ORCID

JOURNAL OF CHEMICAL PHYSICS

Volume: 145 Issue: 18 Article Number: 184306 DOI: 10.1063/1.4967170 Published: NOV 14 2016 View Journal Impact

Abstract

In the present study, we examined the UV excitations of a newly introduced molecular set, Halons-9, composed of nine gaseous halon molecules. The performance of the density functional-based multireference configuration interaction method (DFT/MRCI) and time-dependent density functional theory with CAM-B3LYP functional (TD-CAM-B3LYP) in the computation of singlet and triplet excited states of this set was evaluated against coupled-cluster with singles and doubles (CCSD). Excited states up to the corresponding ionization limits, including both localized and delocalized excitations, have been benchmarked. TD-CAM-B3LYP significantly underestimates excitation energies of the higher mixed valence-Rydberg and Rydberg states, with computed mean absolute deviations from the equation of motion (EOM)-CCSD results 1.06 and 0.76 eV, respectively. DFT/MRCI gives a significantly better description of higher excited states, albeit still poor, compared to the TD-CAM-B3LYP. The mean absolute deviations of mixed valence-Rydberg and Rydberg states from the reference EOM-CCSD values are 0.66 and 0.47 eV, respectively. The performance of DFT/MRCI for description of strongly correlated states with valence-Rydberg mixing is still not satisfactory enough. On the other hand, oscillator strengths of most of singlet states obtained with both methods are close to the EOM-CCSD values. The largest deviations, occurring in the case of several high-lying multiconfigurational states, are of an order of magnitude. Published by AIP Publishing.

Keywords

KeyWords Plus: DENSITY-FUNCTIONAL THEORY; ABSORPTION CROSS-SECTIONS; COUPLED-CLUSTER SINGLES; EXCITED-STATE PROPERTIES; CONFIGURATION-INTERACTION; PHOTOABSORPTION SPECTRUM; ELECTRONIC EXCITATION; ASYMPTOTIC CORRECTION; MP2 ENERGY; BASIS-SETS

Author Information

Reprint Address: Stojanovic, L (reprint author)

+ Aix Marseille Univ, CNRS, ICR, Marseille, France.

Addresses:

🛨 [1] Aix Marseille Univ, CNRS, ICR, Marseille, France

[2] King Abdulaziz Univ, Fac Sci, Dept Chem, BO 208203, Jeddah, Saudi Arabia
 Organization-Enhanced Name(s)

Organization-Ennanced Name(s

King Abdulaziz University

+ [3] Cairo Univ, Dept Chem, Fac Sci, Giza, Egypt

 $\textbf{E-mail Addresses:}\ stojanovicmljiljana@gmail.com;\ mario.barbatti@univ-amu.fr$

Citation Network

0 Times Cited

81 Cited References

View Related Records

(data from Web of Science Core Collection)

All Times Cited Counts

0 in All Databases

0 in Web of Science Core Collection

0 in BIOSIS Citation Index

0 in Chinese Science Citation

Database

0 in Data Citation Index

0 in Russian Science Citation Index

0 in SciELO Citation Index

Usage Count

Last 180 Days: 7 Since 2013: 8

Learn more

This record is from: Web of Science Core Collection

- Science Citation Index Expanded

Suggest a correction

If you would like to improve the quality of the data in this record, please suggest a correction.

Funding

Funding Agency	Grant Number
Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah	43-130-35-RG
A*MIDEX Grant - French Government	ANR-11-IDEX-0001-02
project Equip@Meso - French Government	ANR-10-EQPX-29-01

View funding text

Publisher

AMER INST PHYSICS, 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA

Categories / Classification

Research Areas: Chemistry; Physics

Web of Science Categories: Chemistry, Physical; Physics, Atomic, Molecular & Chemical

Document Information

Document Type: Article Language: English

Accession Number: WOS:000388616100024

PubMed ID: 27846696 ISSN: 0021-9606 elSSN: 1089-7690

Journal Information

Table of Contents: Current Contents Connect Impact Factor: Journal Citation Reports

Other Information

IDS Number: ED10Z

Cited References in Web of Science Core Collection: 81 Times Cited in Web of Science Core Collection: 0

54 of 752

TERMS OF USE © 2017 CLARIVATE ANALYTICS PRIVACY POLICY **FEEDBACK**